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Abstract

This document covers implementation of NTFS & HFS+ file system support in Linux operating sys-
tems using Paragon NTFS & HFS+ file system driver. Basic installation procedures are described.
Detailed mount options description is given.File system creation (formatting) and checking utilities are
described.List of supported NTFS & HFS+ features is given with limitations imposed by Linux. There
is also advanced troubleshooting section.
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1 INTRODUCTION

1 Introduction

1.1 Historical review

Historically, different operating systems supported different file systems. Sharing files among different
platforms was not an easy task. For instance, documents that were created in Windows and are stored
on NTFS partitions may be inaccessible under Linux, because Linux does not include full support for
NTFS. For example, open-source NTFS-3G NTFS driver does not support random write access to
compressed files.

Paragon NTFS&HFS+ for Linux 9.6 solves these problems — now everyone can access NTFS and
HFS+ partitions from Linux in a usual manner with maximum performance and reliability. The driver
allows mounting NTFS and HFS+ partitions, so that programs may work transparently with these
mounted partitions — browse contents, open documents, run applications, work with existing files
(delete/copy/modify) and create new ones.

Paragon NTFS&HFS+ for Linux 9.6 is a commercial Linux driver for local access to NTFS and HFS+
volumes. It supports full read/write access. The driver is a Kernel module, which guarantees rapid
and transparent access to supported file systems. Mount volumes manually or insert into fstab, and
NTFS/HFS+ partitions will be available like any other directory tree.

Paragon NTFS&HFS+ for Linux 9.6 Professional also includes useful additional utilities that provide
the ability to check integrity and create NTFS/HFS+ volumes.

1.2 Paragon UFSD technology

UFSD (Universal File System Driver) is a unique technology developed by Paragon Software to pro-
vide full access (read/write, format, etc.) to volumes of the popular file systems: NTFS, exFAT, HFS+,
APFS under various platforms, including Windows, Linux, Mac OS X, etc. in case these file systems
are not otherwise supported.

UFSD technology provides access directly to the physical devices that is why it can process partitions
regardless of their support by the current Operating System (OS). With UFSD it is possible to mount
NTFS, HFS+, APFS and exFAT partitions under Linux, thus getting access to its contents, just the
way it is implemented in the NTFS&HFS+ or APFS for Linux driver, and the technology also allows
direct access via physical device addressing, the way it is implemented in the driver too.

Paragon UFSDs are designed to be readily integrated into any solution using our UFSD Software
Development Kit (UFSD SDK), which includes all of the necessary tools to develop applications with
the following main features:

• Access to un-mounted partitions (i.e. drive letter not assigned);

• Access to other file systems that normally would not be supported by the operating system;

• Platform-independent UFSD API.

This software product contains components, which are partly subject to the license terms of the GNU
General Public License or GNU Lesser General Public License ("LGPL"). You can request the modi-
fied source code of this software via a contact request: https://www.paragonsoftware.com/contact.html.
The offer is valid for at least 3 years from the date of the publication of the corresponding software
product. We deliver the software on CD/DVD or USB stick, whose production costs we claim in return.
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1.3 How UFSD works on Linux 1 INTRODUCTION

Note: NTFS, HFS+, APFS and exFAT drivers for Linux as well as utilities were written using UFSD
SDK.

1.3 How UFSD works on Linux

Modern operating systems are based on the concept of Installable File System drivers (IFS). User
simply needs to provide an operating system with the proper file system driver to work with the file
system in usual manner. Paragon NTFS&HFS+ for Linux 9.6 includes NTFS & HFS+ driver for Linux
environment. Once appropriate components of Paragon NTFS&HFS+ for Linux 9.6 are installed,
the operating system can mount these file systems and work with directories/files stored on the file
systems.

1.4 Key features

Paragon NTFS&HFS+ for Linux 9.6 is released in the Express and Professional Editions. All of the
products share the following features:

• Transparent read-write access to NTFS and HFS+ volumes — single Kernel module provides sup-
port both NTFS and HFS+ file systems;

• High performance (in some cases even better than Ext4 FS);

• Easy installation and uninstallation (assistant scripts);

• Support for the latest Linux Kernels and distributions;

• Support for iSCSI and SSD storages;

• File sharing over network via SAMBA;

• Low CPU load during data transfers;

• Unlimited file and volume size (within NTFS/HFS+ and Kernel limitations).

What’s new in Paragon NTFS&HFS+ for Linux 9.6

• Support for Kernel versions from 2.6.36 up to 4.20.x;

• Improved "sparse" mount option for NTFS;

• Overall stability improvements;

• Simultaneous workability for NTFS/HFS+ and APFS drivers.

NTFS specific features:

• NTFS versions 1.2, 3.0 and 3.1 (Windows NT 4.0, 2000, XP, 2003, Vista, 7, 8.1, 10, Server 2016,
Server 2019);

• Support for compressed files (random access for reading and writing with no limitations);

• Sparse files support.

HFS+ specific features:

Paragon Technologie GmbH
Leo-Wohleb-Straße 8, 79098 Freiburg, Germany



1 INTRODUCTION 1.4 Key features

• Both case sensitive and case insensitive types of HFS+ file system are supported;

• During file copy operation (using cp command) on Linux only ‘data’ fork is copied;

NTFS compatibility information:

File system version Comments

NTFS version 1.2 Originates from Microsoft Windows NT 4.0

NTFS version 3.0 Originates from Microsoft Windows 2000

NTFS version 3.1 Originates from Microsoft Windows XP/2003/ Vista/7/8.1/10 and
Server 2016/2019

Additional features of the Professional Edition:

• Full support of the native HFS+ journal;

• Automatic driver rebuild for newer supported Kernels (support for the DKMS library);

• Automatic NTFS/HFS+ volume mounting;

• Additional utilities:

– ufsd utility - single binary for all file system utilities;

– chkufsd - single binary for checking every supported file system;

– mkntfs - format any partition as NTFS under Linux;

– chkntfs - check NTFS partition integrity and fix errors;

– mkhfs- format any partition as HFS+ under Linux;

– chkhfs - check HFS+ partition for integrity and fix errors;

– Sysdump utility - debug utility for collecting volume metadata image and debug system informa-
tion.

Copyright© 1994-2019 Paragon Technologie GmbH. All rights reserved.
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2 System requirements

This topic highlights requirements to hardware and software that may be used to run Paragon
NTFS&HFS+ for Linux 9.6.

2.1 Hardware requirements

Minimum hardware requirements:

• Processor: Intel Pentium 300 MHz and higher, or compatible;

• both 32-bit and 64-bit CPUs are supported;

• 16MB of RAM.

Due to unique technology NTFS&HFS+ for Linux drivers have low system requirements. For example,
it is enough for our driver to have 650KB of free RAM to work with NTFS partitions larger than 250
GB. NTFS&HFS+ Kernel modules occupy around 800 KB of RAM.

Real-life values:

• 200 KB while executing 5 commands like ’dd if=/dev/zero of=/mnt/sda1/test bs=1M
count=1000&’ in background.

• 516 KB while executing ’rsync -r /home /mnt/sda1’ command.

• 17 MB while compiling bench test on Desktop Linux system in virtual environment using NTFS file
system: a file-tree with a size about 220 MB was created and patched, simulating Linux Kernel
installation process.

RAM consumption depends first of all on whole amount of memory available in the system. If it is low
then the driver wouldn’t keep a lot of descriptors opened to keep the memory usage at minimum.

2.2 Software requirements

Supported Linux Kernel versions

• Linux with kernel versions 2.6.36 and newer;

• Linux with kernel versions up to 4.20.x ( NTFS & HFS+ driver was tested with Kernels up to 4.20.10).

Linux distributions the products were tested with:

• Ubuntu 18.04;

• Debian 9.8;

• Fedora 29;

• OpenSuse Leap 15.0;

• CentOS 7.6.
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2 SYSTEM REQUIREMENTS 2.2 Software requirements

Development Environment
A development environment is required to compile Linux drivers and utilities. Please verify that these
tools are all functional. The easiest way is to choose the developer toolkit when installing Linux.
What must be installed:

• GNU C++ compiler (for Professional version only);

#g++ --version

• GNU glibc-static (recommended for Professional version only);

• DKMS library (for Professional version only).

#dkms --version

• Kernel source code (recommended) or Kernel header files (doesn’t always work);

#rpm -qa|grep kernel-source (for RPM based kernel-sources)

• GNU C compiler;

#gcc --version

• GNU Make;

#make --version

• GNU ld (binutils);

#ld --version

• Modutils (module-init tools).

#insmod -V

Limitations

• GNU C compiler (gcc) version 4.9 or higher is required;

• The user should login as root to install the drivers and utilities;

• Correct operation is not guaranteed for customized Linux kernels. Commercial porting service to
customized Linux kernels is available from Paragon Software Group — for more information send
e-mail to sales@paragon-software.com).
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3 Installation

This section describes workflows related to installing and using Paragon NTFS&HFS+ for Linux driver.

3.1 Shipment

The setup files for each product of the family are provided as the downloadable TGZ archives, which
can be downloaded from the company site.

3.2 Components

The package includes the following components:

• Source files for the NTFS&HFS+ for Linux driver;

• Assistant script files, which are purposed to simplify the installation and uninstallation routines;

• Source files for additional utilities (for Professional edition only);

• Source files for DKMS library support (for Professional edition only);

• Source files for automatic mounting integration (for Professional edition only).

Paragon NTFS&HFS+ Linux driver and utilities must be compiled on the end user’s system for correct
configuration. By installing the software you accept the terms of End User License Agreement listed
in License file.

3.3 Installing driver

First, NTFS & HFS+ driver must be built and installed.

Steps to install the NTFS & HFS+ for Linux driver are as follows:

1. Log in as root. This step is obligatory;

2. Build and install the Paragon NTFS&HFS+ for Linux 9.6 using install.sh script. Alternatively,
driver binary module may be built manually using ’configure’ ’make driver’ commands.

3. Install the NTFS & HFS+ driver (this step will make the modules available for use);

4. Activating (loading) the driver. After building and installing, the NTFS & HFS+ driver can be refer-
enced as “universal file system driver” (ufsd) when mounting NTFS & HFS+ partitions.

The steps 1-3 should be made only once while step 4 is the standard way of using file system drivers
in Linux environment.
NTFS & HFS+ for Linux include a set of assistant script files for the simplification of building, installing
and uninstalling procedures. Note that these assistant scripts may fail to work in customized Linux
configurations or unsupported Linux distributions. Use install.sh and uninstall.sh script files
to install and uninstall (correspondingly) NTFS & HFS+ driver and utilities . The sections below de-
scribe the installation procedure in details.
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3 INSTALLATION 3.3 Installing driver

Unpacking Setup Files
The setup files of the Linux-based version of the NTFS & HFS+ for Linux are provided in the form of
a gzip archive. The archive should be copied to the hard disk and decompressed. For example: For
the NTFS & HFS+ for Linux driver and utilities:

• create a separate folder:

$ mkdir /usr/tmp/ufsd

• change the current directory to the new one

$ cd /usr/tmp/ufsd

• use tar utility to unpack the initial archive

$ tar -xf /path/to/the/initial/archive/ufsd_*.tar.gz

Next step is to build and install the NTFS & HFS+ for Linux driver.

Using the INSTALL.SH Assistant Script

The assistant script "install.sh" provides the extremely easy and flexible way to make the NTFS &
HFS+ for Linux and install driver module in the system. Additionally, the script can reconfigure OS so
that driver module is automatically rebuilt for another supported Kernel version (Professional edition
only)and NTFS & HFS+ volumes are automatically mounted with the UFSD driver(Professional edition
only).
Please note that development tools and kernel sources are required to present on the system and
stay in the default locations to build and install the drivers.

Installation

Just run the install.sh script with root privileges:

# ./install.sh

or

$ sudo ./install.sh

The assistant script will automatically perform the following actions:

1. Detect the Linux Kernel version;

2. Find kernel header files and libraries needed for building the drivers;

3. Add service for rebuilding driver module for supported Kernels via the DKMS library(Professional
edition only);

4. Build driver binary modules (jnl.ko and ufsd.ko);

5. Install the driver;

6. Add automatic mounting settings for NTFS/HFS+ volumes (Professional edition only);

7. Build and install additional utilities (Professional edition only);
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INSTALL.SH default mode for the NTFS & HFS+ for Linux driver

The assistant script install.sh always names the NTFS & HFS+ for Linux driver module as ufsd
(it is the abbreviation of the project name Universal File System Driver).
Now you can mount any NTFS & HFS+ partition:

$ sudo mount -t ufsd <device> <mount_point>

3.4 Uninstalling driver

To completely remove the driversand utilitiesfrom the current Kernel, one should dismount all NTFS
& HFS+ partitions mounted with the driver, uninstall the drivers and unload binary modules from the
Kernel.
NTFS & HFS+ for Linux provides tools for the drivers/utilitiesuninstall automation.
The assistant script uninstall.sh completely removes the drivers/utilitiesfrom the system.

Using the UNINSTALL.SH Assistant Script

The assistant script uninstall.sh provides the extremely easy and flexible way to deactivate and
remove the driversand utilitiesfrom the system. The script performs correct deactivation, uninstallation
and the complete removal of driver’sand utilities’ files.

Uninstalling

Unmount all currently mounted NTFS & HFS+ partitions and then run the ’uninstall.sh’ script:

$ sudo ./uninstall.sh

The assistant script will automatically perform the following actions:

1. Deactivate the driver modules. If the driver is still in use, the further script execution is aborted;

2. Uninstall the drivers;

3. Remove all binary and source files of the driver

4. Uninstall utilities (for Professional version only).
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4 Using The Driver

After building and installing Paragon NTFS&HFS+ for Linux 9.6 driver, it can be automatically loaded
at the system startup. The driver allows to mount supported partitions and provides access to their
whole contents.

4.1 Getting started

The goal of this section is to help users to quickly find out how to use the product. It describes general
approach to mounting partitions using UFSD file system driver and helps to avoid common issues.
We strongly recommend reading this section before starting using our driver.

To mount volume using UFSD driver, standard mount command is used, with FS type set to ufsd,
e.g.:

# mount -t ufsd /dev/sda1 /mnt/sda1

After this command is executed, there can be several mount scenarios for a disk (for more information
see Mount troubleshooting subsection):

• The disk is “clean” (without any errors), mounted by the driver and ready to use.
• Disk can’t be mounted. In this case can be several scenarios:

1. Disk has “dirty” flag set (for more information see Dirty flag issues subsection):
– Use chkntfs/chkhfs utilities with -a -f options to check the volume for errors and in-

consistencies and fix them (if any). This is recommended approach (see chkntfs or chkhfs
subsections);

– Use ‘force’ mount option (see Dirty flag issues subsection).
2. The disk is a GPT-partitioned disk — check GPT issues subsection for more information.
3. Follow other steps on the Mount troubleshooting diagram to find the cause of the issue. Update/-

fix Kernel source code (if necessary) and request new driver for the new Kernel from Paragon
Software.

Analyze returned status and check output of (dmesg | tail). In case of failure, follow the Mount trou-
bleshooting diagram to find possible causes and try to mount the partition again using the same or
different mount options, if needed (see Mount options subsection).

If there is still a problem mounting the partition fill out Paragon’s online request form from your user
account so we could help you with the issue.

4.2 Mounting and unmounting partitions

Mounting NTFS and HFS+ volumes

To mount volume using UFSD driver, use mount command with FS type set to ufsd, e.g.:

# mount -t ufsd /dev/sda1 /mnt/sda1

Sometimes volumes cannot be mounted using ’mount’ command, for example:

# mount -t ufsd /dev/sdd1 /mnt/sdd1
mount: wrong fs type, bad option, bad superblock on /dev/sdd1,

missing codepage or helper program, or other error
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4.3 Dirty flag issues 4 USING THE DRIVER

In some cases useful info is found in syslog - try
dmesg | tail or so

In that case more information can be obtained by using the following command:

# dmesg | tail | grep ufsd
[ 369.844741] ufsd: volume is dirty and "force" flag is not set

Lines related to UFSD driver start with ’ufsd:’ prefix. In case Kernel log is redirected to console,
messages may be output to terminal window right after mount command is issued:

# mount -t ufsd /dev/sdd1 /mnt/sdd1
ufsd: volume is dirty and "force" flag is not set
mount: wrong fs type, bad option, bad superblock on /dev/sdd1,

missing codepage or helper program, or other error
In some cases useful info is found in syslog - try
dmesg | tail or so

In this example, dmesg output contains information that the volume could not be mounted due to
‘dirty’ flag. See Dirty flag issues subsection for more information on ‘dirty’ flag and how to resolve the
issue.

Dismount volumes
To dismount volumes mounted by UFSD driver issue, use umount command:

# umount /dev/sdd1

See Why the disk can’t be dismounted? subsection for more information, if the volume can’t be
dismounted.

4.3 Dirty flag issues

‘Dirty’ flag is special feature implemented in most of the modern file systems, including NTFS and
HFS+. This flag is set after volume is mounted in read/write mode and cleared after volume is correctly
unmounted (see notes on ’force’ mount option for more information). Without ‘dirty’ flag it is impossible
to tell if given volume was correctly unmounted or not. Detecting incorrectly unmounted volumes helps
to detect possible errors as early as possible. Thus, this flag helps to preserve file system consistency.
Please note that even in case ‘dirty’ flag is set on the volume, file system is not necessarily corrupt.

Paragon NTFS&HFS+ for Linux drivers from version 8 support ‘dirty’ flag on both NTFS and HFS+.
By default, driver refuses to mount volumes with ‘dirty’ flag set. Recommended course of action is to
check the volume for errors and repair any inconsistencies found using chkntfs/chkhfs utility with
-a -f command line options (see Additional Utilities). Run with -a command line option, the utilities
check dirty flag state and in case it is set, they perform all necessary checks. If ‘dirty’ flag is not set,
file system checking utilities exits immediately. If -f command line option is specified, the utilities
repair any errors or inconsistencies that they find and finally clear ‘dirty’ flag. This approach is similar
to the way Windows and MacOS handle ‘dirty’ volumes. See corresponding sections on NTFS and
HFS+ utilities and ‘File system checking utilities return codes’ section for more information.

To make driver mount dirty volumes without checking for possible errors and correcting them, ’force’
mount option can be used (while it is not recommended). This way, ‘dirty’ flag is not cleared and any
possibly existing errors or inconsistencies are not fixed. ‘Dirty’ flag will remain set until volume is
checked for errors using Paragon chkntfs/chkhfs with -f command line option or using Windows
chkdsk utility with /f switch or MacOS Disk Utility (for NTFS and HFS+ volumes, respectively).
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4.4 GPT issues

Some Linux Kernels do not behave correctly when there is EFI partition on GPT-partitioned devices.
This is most often the case with HDDs partitioned using MacOS Disk Utility.

This leads to seemingly wrong operation of UFSD driver(s) that refuse to mount partition. In that
case fdisk may report that there is only one EFI partition on the device, ignoring some or all of the
following NTFS and/or HFS+ partition(s). To work around the issue, attention must be paid to volume
type reported by fdisk -l command on GUID-partitioned disks.

Example:

# fdisk -l
Disk /dev/sda: 80.0 GB, 80026361856 bytes
255 heads, 63 sectors/track, 9729 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/sda1 1 9730 78150743+ ee EFI GPT

fdisk reports that /dev/sda only contains single EFI partition that spans via entire disk. Neverthe-
less, mounting partition /dev/sda2 to /mnt/hda succeedes:

# mount -t ufsd /dev/sda2 /mnt/hda

And after that mount command issued without arguments lists, among others, mounted partition
/dev/sda2 that was not listed by fdisk -l (marked with red below).

/dev/root on / type squashfs (ro)
none on /dev type devfs (rw)
none on /proc type proc (rw,nodiratime)
devpts on /dev/pts type devpts (rw)
none on /sys type sysfs (rw)
none on /tmp type ramfs (rw)
/dev/mtdblock/2 on /usr/local/etc type yaffs (rw,noatime)
/dev/rd/0 on /mnt/rd type vfat (rw,nodiratime,fmask=0022,dmask=0022,

↪→codepage=cp437,iocharset=iso8859-1)
/dev/sda2 on /mnt/hda type ufsd

(rw,nodiratime,nls=iso8859-1,uid=0,gid=0,fmask=22,dmask=22,nocase)
/dev/scsi/host2/bus0/target0/lun0/part1 on /tmp/usbmounts/sdb1 type ufsd

↪→(ro,nodiratime,nls=utf8,uid=0,gid=0,fmask=0,dmask=0)

4.5 Issues with large HDDs

Though our driver supports partitions larger than 2 TB (tested on 20 TB partitions on real hardware
and on 25 TB partitions in virtual environment), not all versions of Linux Kernels support block devices
larger than 2 TB on all possible interfaces. E.g. Ubuntu 10.04 does not support 2.5 TB SATA HDD
attached via USB->SATA converter, while the same HDD with the same converter is mounted OK on
Windows 7 and the same HDD connected to Ubuntu 10.04 via SATA interface can be mounted and
used successfully.

If there is similar issue, please perform the test cases described above to make sure where the root
cause of the issue is (in Paragon’s driver or in Linux Kernel).
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5 Mount options

This section describes mount options for mounting supported file system partitions.

5.1 Mount options

SYNOPSYS
mount -t ufsd [-o options] device mount_point

Option NTFS HFS+ Expected behavior and examples

iocharset or
nls

+ + -o iocharset=NAME1[,iocharset=NAME2]
-o nls=NAME1[,nls=NAME2]
-o codepage=NAME1[,codepage=NAME2]

The NTFS/HFS+ file systems store all file/directory names in
Unicode format (UTF-16), which can represent any character
from any language. In case none of these options is set, the
default codepage will be used (CONFIG_NLS_DEFAULT). If
none of the specified codepages exist on the system, the default
codepage will be used again. This option informs the driver
how to interpret path strings and translate them to Unicode and
back. Up to 8 different code pages can be specified. The driver
tries to use the codepages from specified list in order until it
manages to translate all the characters in the string. If none of
the specified codepages allows to translate all the characters,
Kernel’s default codepages is used.

Note:
• Paragon driver uses extended UTF-8 for Unicode number

U+10000 characters support when ’=utf8’ is specified.
• codepage, nls and iocharset mount option must be used

in the form:
codepage=... nls=cp... iocharset=cp...

Examples:
• nls=utf8
• iocharset=utf8

nocase + - -o nocase

All file and directory operations (open, find, rename) are case
insensitive. Casing is preserved in the names of existing files
and directories.

showmeta + + -o showmeta

Use this parameter to show all meta-files (System Files) on a
mounted NTFS/HFS+ partition. By default, all meta-files are hid-
den.
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Option NTFS HFS+ Expected behavior and examples

noatime + + -o noatime

All files and directories will not update their last access time at-
tribute if a NTFS/HFS+ partition is mounted with this parameter.
This option can speed up file system operation.

uid + + -o uid=USERID

By default all existed files on a mounted NTFS/HFS+ volume
are owned by root, while created files are owned by the user.
Specifying the uid parameter you can set an owner of files.
The userid can be any name from /etc/passwd, or any number
representing a user id.

File’s owner can be changed by the chown command, but this
change will be effective until volume unmount.

gid + + -o gid=GROUPID

By default all existed files on a mounted NTFS/HFS+ volume
are owned by group root, while created files are owned by the
user’s group. Specifying the gid parameter you can set a owner
group of the files. The groupid can be any name from /etc/group,
or any number representing a group id.

File’s group can be changed by the chown command, but this
change will be effective until volume unmount.

umask + + -o umask={VALUE}

The default permissions given to a mounted NTFS/HFS+ vol-
ume are rwx------ (for security reasons). The umask option
controls these permissions for files/directories created after the
volume is mounted.

mount -t ufsd /dev/hda1 /mnt/ntfs_0 -o
umask=0222

fmask
dmask

+ + -o fmask=VALUE
-o dmask=VALUE

umask option changes the permissions for new created files and
directories; fmask is applied to files; dmask to directories that
already exist on a mounted volume. The effect of these options
can be combined. To mount Samba, FTP or NFS shares the
combination of umask=000, fmask=000,dmask=000 is usually
specified.

ro + + -o ro

To mount an NTFS/HFS+ volume in read-only mode.
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Option NTFS HFS+ Expected behavior and examples

bestcompr + - -o bestcompr

Instructs the driver to use highest compression level when writ-
ing compressed files. High CPU-load.

sparse + - -o sparse

Create new files as “sparse”. This feature allows creating holes
inside new created files (avoids filling unwritten space with ze-
roes). This option is not recommended in case NTFS partition is
used for BitTorrent downloads.

force + + -o force

Not recommended for use.

Forces the driver to mount partitions even if ‘dirty’ flag (volume
dirty) is set. It is recommended to use Paragon or OS-specific
file system checking utility before mounting ‘dirty’ partitions to
reset the ’dirty’ flag.

Note that if ‘dirty’ volume was mounted with ‘force’ mount option,
dirty flag will not be cleared when volume is unmounted using
umount command.

nohidden + - -o nohidden

Files with the Windows-specific HIDDEN attribute will not be
shown under Linux.

sys_im-
mutable

+ - -o sys_immutable

Files with the Windows-specific SYSTEM attribute will be marked
as system immutable files. This option is not supported for sym-
link/fifo/socket files.

acl + + -o acl

Support POSIX ACLs (Access Control Lists). Effective if sup-
ported by Kernel. Not to be confused with NTFS ACLs.

The option specified as acl enables support for POSIX ACLs.
Supported if driver is built with support for ext2-like handling of
file/directory permissions. Recommended for use with the HFS+
volumes.
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Option NTFS HFS+ Expected behavior and examples

sync + + -o sync

All file system operations will be done synchronously. When
used, UFSD driver performance may be decreased.

This option is recommended for use, when disk can be detached
without proper unmount, as it helps to minimize the possibility of
the file system errors, when proper unmount for the volume is
not performed.

discard + + -o discard

discard is the mount option in the UFSD driver, which is recom-
mended for use with the solid-state drives (SSD) to enable sup-
port of the TRIM command for improved performance on delete
operations..
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6 Additional Utilities

Additional utilities for Paragon NTFS&HFS+ for Linux 9.6 provide the ability to check integrity and
create NTFS/HFS+ volumes on block devices from your Linux OS. Additional utilities for Paragon
NTFS&HFS+ for Linux 9.6 were developed with Paragon UFSD SDK.

6.1 ufsd utility

ufsd utility is the single file system utility binary, which is included into the package since Paragon
NTFS&HFS+ for Linux version 9.4.3.

Synopsis

ufsd [utility [arguments]...]
ufsd [--version]

E.g.: ’ufsd chkntfs -f /dev/sdb1’

Utilities

• chkntfs - check and fix NTFS volume

• chkhfs - check and fix HFS+ volume

• chkufsd - check and fix NTFS/HFS+ volume (universal utility)

• mkntfs - format volume into NTFS

• mkhfs - format volume into HFS+

Description
ufsd is the multi-call binary that combines Paragon file system formatting and checking utilities into
a single executable.

All utilities are actually hardlinks to the ufsd utility. In order to make sure that the files are not taking
unnecessary space, it is advised to unpack provided archive on the target platform, or create hardlinks
to the ufsd utility manually. You may also use symlinks to achieve the identical functionality or pass
utility name as an argument to the ufsd binary, similar to how busybox binary operates.

6.2 chkufsd

chkufsd utility is the combined utility for checking and fixing all file systems, supported by Paragon
NTFS&HFS+ for Linux 9.6.

Synopsis

chkufsd [option] device

E.g.: ’chkufsd -f /dev/sdb1’
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Options

-fs:ntfs Treat target volume as NTFS

-fs:hfs Treat target volume as HFS+

-f Fix errors on the disk

-a Perform checks only if ‘dirty’ flag is set

-b:size Override default block (sector) size. Usage of default settings are strongly
recommended. The ’-b’ parameter can use following values: 512, 1024,
2048, 4096.

-m:size Set a limit for memory usage during file system check. Usage of this parameter
may lower file system check performance. This option only limits amount of
memory allocated for volume bitmap.

-h Display this help

--short Minimum file system check

--safe Errors are not fixed, dirty flag is cleared if no errors found

--showminors Show minor errors

--no-orphans Do not restore real orphan files

--trace Turn on UFSD trace

--verbose Explain what is being done

--nopercents Do not print percents during checking process

--version Show version and exit

Description
chkufsd is a combined utility that allows to check and fix file systems supported by the Paragon
driver.

Note: Since version 9.4.3 this tool is actually a hardlink to the ufsd utility. In order to make sure that
the files are not taking unnecessary space, it is advised to unpack provided archive on the target
platform, or create hardlinks to the ’ufsd’ utility manually.

6.3 NTFS utilities

There are 2 basic utilities for NTFS file system:

• mkntfs — format any partition as NTFS under Linux

• chkntfs — check NTFS partition for integrity and (optionally) fix errors

6.3.1 mkntfs
mkntfs utility creates NTFS volumes (1.2, 3.0, 3.1 (Windows NT 4.0/2000/XP/2003/Vista/7/8.1/10)
file system) on user-specified (block) device (disk partition) under Linux OS.

Synopsis
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mkntfs [options] device

E.g.: ’mkntfs -f /dev/sdb1’

Options

-v:label Specify volume label.

-c Files created on the new volume will be compressed by default.

-a:size Override the default allocation unit size. Default settings are strongly
recommended for general use. NTFS supports 512, 1024, 2048, 4096,
8192, 16K, 32K, 64K. File compression is not supported for allocation
unit size above 4096.

-b:size Override the default block (sector) size. Default settings are strongly
recommended for general use. One can use 512, 1024, 2048, 4096.

-m:size Override default MFT record size. Default settings are strongly recom-
mended for general use. One can use 512, 1024, 2048, 4096.

-j:size Set journal size for Paragon journal on NTFS volume. Supported sizes:
from 1MB to 512MB. By default Paragon journal for NTFS is disabled.

-f Force the format without confirmation.

-L Use large FRS. The same as ’-UseLargeFRS’ or ’/L’ option on Win-
dows. Equivalent of the ’-m:4096’ option in Paragon’s mkntfs.

-s:start Specify “hidden” sectors in the boot area.

-g:tracks:sectors Specify disk geometry that should be written in the boot area.

tracks specifies number of tracks per disk side.

sectors specifies number of sectors per track.

The most popular geometries are:
• NORMAL: 63 sectors per track and 15(16) tracks per cylinder.
• LBA: 63 sectors per track and 255 tracks per cylinder.

Generally Windows uses the LBA geometry (-g:255:63). If -g is not
specified, the utility obtains geometry from OS.

-winxp Create NTFS compatible with Windows XP (default)

-winvista Create NTFS compatible with Windows Vista

-win7 Create NTFS compatible with Windows 7

-h Display this help

--help Display this help

--bcfs Sets System ID in boot sector to ’BCFS’, making file system unrecog-
nizable for non-Paragon drivers and utilities

--nodiscard Do not discard volume before formatting

--trace Turn on UFSD trace
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--verbose Explain what is being done

--nopercents Do not print percents during format process

--version Show the version and exit

Description
mkntfs is a standalone utility that allows to format NTFS partitions under Linux. It is used to create a
NTFS 1.2, 3.0, 3.1 (Windows NT 4.0/2000/XP/2003/Vista/7/8.1/10) file system on adevice (usually a
disk partition).

Notes:

1. mkntfs doesn’t change the MBR (Master Boot Record) when formatting a partition. Therefore,
most of Linux commands (like fdisk -l) will be unable to determine that partition’s files system
was changed to NTFS.

2. Since version 9.4.3 this tool is actually a hardlink to the ufsd utility . In order to make sure that
the files are not taking unnecessary space, it is advised to unpack provided archive on the target
platform, or create hardlinks to the ufsd utility manually.

6.3.2 chkntfs
chkntfs utility performs consistency checking of NTFS volumes and (optionally) fixes errors.

Synopsis

chkntfs [options] device

E.g.: ’chkntfs -f /dev/sdb1’

Options

-f Fix errors on the disk.

-a Perform checks only if ‘dirty’ flag is set.

-b:size Override default block (sector) size. Usage of default settings are
strongly recommended. The ’-b’ parameter can use following values:
512, 1024, 2048, 4096.

-m:size Set a limit for memory usage during file system check. Usage of this
parameter may lower file system check performance.

-h Display this help.

-m:size Memory limit used by the utility

-short Minimum file system check

-safe Errors are not fixed, dirty flag is cleared if no errors found

--showminors Show minor errors.

--no-orphans Do not restore real orphan files

--trace Turn on UFSD trace.

--verbose Explain what is being done.
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--nopercents Do not print percents during checking process.

--version Show version and exit.

Description
chkntfs creates and displays a status report about a NTFS file system. chkntfs also lists and
corrects errors on the disk, if any (-f flag must be specified).

Notes:

1. when --no-orphans option is used, real orphan files will be deleted. Without this option chkntfs
restores real orphan files to found.XXX folders.

2. Since version 9.4.3 this tool is actually a hardlink to the ufsd utility. In order to make sure that
the files are not taking unnecessary space, it is advised to unpack provided archive on the target
platform, or create hardlinks to the ufsd utility manually.

6.4 HFS+ utilities

There are 2 basic utilities for HFS+ file system:

• mkhfs — format any partition as HFS+ under Linux

• chkhfs — check HFS+ partition for integrity and (optionally) fix errors

6.4.1 mkhfs
mkhfs utility creates an HFS+ volume on specified (block) device (disk partition) under Linux OS.

Synopsis

mkhfs [options] device

E.g.: ’mkhfs -j /dev/sdb1’

Options

-v:label Specify the volume label.

-a:size Override the default allocation unit size. Default settings are strongly recom-
mended for general use.
HFS+ supports 512, 1024, 2048, 4096, 8192, 16K, 32K and 64K.

-ne:size Specify extents b-tree node size: 512-32K.

-nc:size Specify catalog b-tree node size: 4K-32K.

-na:size Specify attributes b-tree node size: 4K-32K

-f Force the format without confirmation.

-j Make volume journalized with default journal size

-j:size Make volume journalized, manually setting size of the journal
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-c Make volume case-sensitive.

-h Display this help

--help Display this help.

--nodiscard Do not discard volume before formatting

--trace Turn on UFSD trace.

--verbose Explain what is being done.

--nopercents Do not print percents during format process.

--version Show the version and exit.

Description
mkhfs is a standalone utility that allows to format HFS+ partitions under Linux. It is used to create an
HFS+ file system on a device (usually a disk partition).

Note: Since version 9.4.3 this tool is actually a hardlink to the ufsd utility. In order to make sure
that the files are not taking unnecessary space, it is advised to unpack provided archive on the target
platform, or create hardlinks to the ufsd utility manually.

6.4.2 chkhfs
chkhfs utility provides consistency checking of a HFS+ volume and fix errors.

Synopsis

chkhfs [options] device

E.g.: ’chkhfs -f /dev/sdb1’

Options

-f Fix errors on the disk.

-a Perform checks only if ‘dirty’ flag is set.

-b:size Override default block (sector) size. Usage of default settings are
strongly recommended. The ’-b’ parameter can use following values:
512, 1024, 2048, 4096.

-m:size Set a limit for memory usage during file system check. Usage of this
parameter may lower file system check performance.

-h Display this help.

-m:size Memory limit used by the utility

-short Minimum file system check

-safe Errors are not fixed, dirty flag is cleared if no errors found

--showminors Show minor errors.

--no-orphans Do not restore real orphan files
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--trace Turn on UFSD trace.

--verbose Explain what is being done.

--nopercents Do not print percents during checking process.

--version Show version and exit.

Description
chkhfs creates and displays a status report about a HFS+ file system. chkhfs also lists and corrects
errors on the disk, if any (-f flag must be specified).

Note: Since version 9.4.3 this tool is actually a hardlink to the ufsd utility. In order to make sure that
the files are not taking unnecessary space, it is advised to unpack provided archive on the target
platform, or create hardlinks to the ufsd utility manually.
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7 Troubleshooting

This section highlights troubleshooting processes.

7.1 Troubleshooting processes

Step 1. Consult Documentation
Please consult documentation to make sure that encountered behavior is not by design, with spe-
cial attention given to the part related to binary module installation, testing and troubleshooting as
well as to section on Hardware requirements and Software requirements. Please also review Mount
troubleshooting and Using The Driver subsection.

Step 2. Make sure the issue is not related to Linux itself
Now, make sure that root cause of the issue is not related to Linux itself. For example, if an issue is
discovered while performing certain file system-related operation on a volume mounted with Paragon
NTFS&HFS+ for Linux 9.6 driver, make sure the same issue is not observed when the same operation
is performed on ‘native’ file system like Ext2fs, Ext3fs or FAT (except, of course, for operations specific
to NTFS/HFS+ file systems or to Paragon’s driver itself, e.g. IOCTLs, additional utilities and so on).

Step 3. Prepare to report the issue
After performing previous steps and making sure that the issue is related to Paragon NTFS&HFS+
for Linux 9.6 driver, prepare to report the issue to Paragon.

COLLECT ALL INFORMATION ON THE ISSUE
The most important point in issue resolution process is quickly obtaining all the information related to
the issue. A quick collection of required information is the key to resolving an issue faster.

Step 4. Assist Paragon engineers to resolve the issue quickly
Try to provide as detailed information on the issue, as possible.
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7.2 Mount troubleshooting

Use our mount troubleshooting diagram for faster mount issue resolution.

7.3 The install.sh script can’t find kernel sources

1. Read Software requirements section, make sure all tools are functional. For more information,
please read kernel documentation.

2. Linux Kernel must be configured correctly.

3. Make sure that you have kernel sources, for example, in the /usr/src/linux-x.x.xx directory,
where x.x.xx is your kernel version (for example, 4.4.9). Type uname -r in the command line
to know your current kernel version.
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4. Create a symbolic link from the /usr/src/linux-x.x.xx directory to /usr/src/linux. To
create the link type

ls -s /usr/src/linux-$(uname-) /usr/src/linux

5. Make sure that you have the config-x.x.xx file, for the booted Linux kernel, in the /boot
directory. If you haven’t the config-x.x.xx file then type

ls -s /usr/src/linux-$(uname-r)/.config /boot/config-$(uname-r)

to create a symbolic link to the config file.

Note: There are cases when the kernel sources may be located in other directories. In these cases
you should create a symbolic link to /usr/src/linux, for example,

ls -s /lib/modules/$(uname-r)/build /usr/src/linux

If you still have the same problem i.e. install.sh script can’t find the kernel sources it is better to
rebuild your kernel or download and build a stable kernel from the www.kernel.org site.

7.4 Can’t compile the NTFS/HFS+ for Linux driver

1. Read Software requirements section, make sure all tools are functional. For more information,
please read kernel documents.

2. Linux kernel must be configured correctly.

3. The /boot directory must contain the config-(kernel version) file. If the file is missing you should
execute the following command:

ls -s /usr/src/linux-$(uname-r)/.config /boot/config-$(uname-r)

7.5 “Can’t load module” message at the end of installation

1. Make sure that you use the same version of GCC compiler that was used for kernel compilation.

2. Make sure that Makefile of the kernel (you can find Makefile in the directory where the kernel
sources are located) have the correct kernel version at the beginning of the file. For example: if
your loaded kernel version is 4.4.9-300.fc23.x86_64 then the following lines must be found
at the beginning of the Makefile:

VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 9
EXTRAVERSION = -300.fc23.x86_64

7.6 ufsd module: kernel-module version mismatch

That means kernel version mismatch.

1. Check kernel source version in /usr/include/linux/version.h

2. Check the currently running kernel version: uname -r

3. Both versions must match.
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4. If they don’t match, please restore Kernel configuration or recompile kernel anew (advanced).

7.7 ufsd module: create_module: operation is not permitted

That means you must have root privilege to load the driver.

7.8 insmod: a module named as ufsd already exists

1. Make sure that you use the same version of GCC compiler that was used for kernel compilation.

2. Make sure that Makefile of the kernel (you can find Makefile in the directory where the kernel
sources are located) have the correct kernel version at the beginning of the file. For example: if
your loaded kernel version is 4.4.9-300.fc23.x86_64 then the following lines must be found
at the beginning of the Makefile:

VERSION = 4
PATCHLEVEL = 4
SUBLEVEL = 9
EXTRAVERSION = -300.fc23.x86_64

7.9 insmod: Unknown symbol jnl_op (err0)

That means one is trying to load ufsd.ko module into the Linux Kernel before jnl.ko module has
been loaded:

# insmod ufsd.ko
insmod: ERROR: could not insert module ufsd.ko: Unknown symbol in module
# dmesg | tail
[84199.673358] ufsd: Unknown symbol jnl_op (err 0)

Load jnl.ko module first and ufsd.ko afterwards:

# insmod jnl.ko
# insmod ufsd.ko
# lsmod | grep ufsd
ufsd 614400 0
jnl 36864 1 ufsd

7.10 Can’t mount NTFS/HFS+ volume

1. Make sure that the driver is activated (loaded into the Kernel) via following command:

lsmod | grep ufsd

2. Make sure that the driver supports file system mounted partition is formatted with checking its
version:

cat /proc/fs/ufsd/version

3. The volume is dirty. Use chkntfs/chkhfs utility with -a -f command line options to reset ’dirty’
flag. Alternatively, use ’force’ mount options to make the driver ignore ’dirty’ flag.
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7.11 Hardware issues

Sometimes storage issues are caused by a faulty hardware. Hardware issues can be classified by
their place of origin:

1. storage device (HDD, SSD, USB flash drive, SD card, etc.)

2. target platform (hardware board which utilizes the UFSD driver)

3. data medium (e.g. USB cable)

Often this kind of issues can be identified based on the system log output (e.g. dmesg). The basic
principle is to look for an error messages from the underlying subsystem on top of which the UFSD
driver operates (e.g. USB controller). Some examples:
» usb *-*: USB disconnect, device number ***

(in case the USB device was not actually disconnected)
» end_request: I/O error, dev sdX, sector ***
» Buffer I/O error on device sdX, logical block ***
» mmcblk*: error -110 transferring data, sector ***
» sd *:*:*:*: [sdX] Unhandled error code
» sd *:*:*:*: [sdX] Spinning up disk........not responding...
» sd *:*:*:*: [sdX] Device not ready
» xhci_hcd *:*:*: WARN: Stalled endpoint

Identification of the faulty hardware cannot be done solely on the UFSD driver messages because the
driver operates on a higher level than HW drivers. Still UFSD messages can be helpful for obtaining
a general picture of the issue. Here are some typical messages in case of hardware issues:
» ufsd: failed to read block 0xNNNN
» ufsd: failed to map block 0xNNNN
» ufsd: failed to write block 0xNNNN
» ufsd: bio read I/O error

A hardware problem cannot be solved at the file system driver level. Thereby that kind of issues
is out of the Paragon’s scope of responsibility. The best solution is to contact the faulty hardware’s
manufacturer technical support. One should contact us only if the hardware fault is followed by a
system hang or kernel panic caused by the UFSD driver.
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8 Sysdump utility

8.1 Introduction

In case Paragon team requires additional information on the test storage device and/or test platform
itself for the issue troubleshooting with specific NTFS/HFS+ volume(s), the sysdump utility can be
used to capture very compact images of volumes with file system inconsistencies. Additionally it
could be used to collect test platform system information: storage device summary, Kernel version,
loaded UFSD driver version and so on.

As volume images only include file system metadata, the risk of leaking sensitive data when using
sysdump is minimized.

8.2 Main functions

Main functions of the sysdump utility are:

• Capturing metadata image of the test volume

• Collecting HW sample system information.

Note that sysdump utility requires root privileges as they are needed for working with storage
devices on Linux platform.

When utility is run without additional options basic help is displayed

# ./sysdump
Dump NTFS/HFS/Ext volumes (metafiles only) and collect system information

↪→.
Paragon’s Sysdump utility doesn’t collect any personal or user-sensitive

↪→information.
Please refer to the ’Privacy policy’ described in the Sysdump utility

↪→guide for more information.
Usage: sysdump [-s] [device] [-o <filename>]
-s collect system information
-o new file name (if name without suffix ".tar", then suffix ".tar"

↪→will be added automatically)
E.g. sysdump /dev/hdb1

8.3 Using the sysdump utility to collect both platform system information and
metadata

1. Extract sysdump utility to a folder with read/write access.

2. In terminal change to the folder with the extracted sysdump utility. Use the following command to
capture the metadata image and to collect platform system information:

# ./sysdump -s /path/to/partition

3. This will create an archive named, based on platform parameters <Architecture>.<Kernel
version>.<date>.tar with storage device metadata image, its md5 sum and sample system
information:
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# ./sysdump -s /dev/sdc1
Scanning NTFS...
Added 13 files/dirs from $Extend .
Recognized as NTFS.
Dumping "/dev/sdc1" (465.76 GB) ...
Dump finished. File size 1248334848 bytes (including tail)
Collecting system information...
System information was saved to /home/UFSD_utilites/i686

↪→.3.13.0.20141105.tar

8.4 Changing the name of output archive

Name of the output archive can be changed by using the additional ’-o’ parameter and adding new
file name. For example:

# ./sysdump -s /dev/sdc1 -o test.tar
Scanning NTFS...
Added 13 files/dirs from $Extend .
Recognized as NTFS.
Dumping "/dev/sdc1" (465.76 GB) ...
Dump finished. File size 1248334848 bytes (including tail)
Collecting system information...
System information was saved to /home/UFSD_utilites/test.tar

8.5 Output file description

The Sysdump utility creates a single tar archive in the working folder with its’ work results for easier
data transfer to Paragon team. This archive can be easily uncompressed with the tar utility, e.g.:

# tar -xf ./x86_64.3.11.9.20131211.tar

There are several files inside archive:

• dmesg - contents of the ’dmesg’ command output

• dumpbin.gz - compressed metadata image of the test volume

• dumpbin.md5 -md5 checksum for the collected image itself, not the archive file

• modules - list of all Kernel modules (*.ko files) found on the platform

• sysinfo - file with platform system information: list of storage devices, Linux Kernel version, version
of the loaded UFSD driver, CPU, memory information, etc.

8.6 Delivering collected data to Paragon

Please send the tar file, generated by the ’Sysdump’ utility to your support contact at Paragon Soft-
ware via e-mail, via ’My account’ page at Paragon Software Support Portal.

8.7 Privacy policy

Paragon’s Sysdump utility doesn’t collect any personal or user-sensitive information. Platform data
is obtained via usage of the native Linux utilities and standard system files (e.g. fdisk, parted,
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/proc/cpuinfo, /proc/meminfo and others). The resulted volume metadata image includes only file
system metadata and risk of leaking sensitive data when using sysdump utility is minimized. Never-
theless, collected information is also covered by the mutual Non-disclosure agreement and couldn’t
be forwarded to any third party.
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9 UFSD driver compatibility

This section describes file system features supported by Paragon NTFS&HFS+ for Linux 9.6 driver,
respectively.

9.1 NTFS features

Compressed files
Reading and writing compressed files is fully supported in both sequential and random orders.

Encrypted files
Encrypted files are read encrypted. During copy operation, file data streams will be copied encrypted
with loss of decryption capability.

Alternate data streams
When copying from NTFS to Linux FS: all additional streams will not be copied, along with compres-
sion flag and security attributes.

Hardlinks and symlinks
Any link will be copied as a full file with its body, losing link information. Maximum filename length
NTFS stores filenames in UTF-16 encoding. This may cause trouble when very long filenames con-
taining non-latin characters are used and UTF-8 is selected as default Kernel codepage.

9.2 HFS+ features

Case sensitivity
Both case sensitive and case instensitive types of HFS+ file system are supported.

Alternate data streams (forks)
During file copy operation (using cp command) on Linux only ’data’ fork is copied.
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10 Frequently Asked Questions

10.1 What are ’minor errors’ reported by chkntfs utility?

Most of information about files (times, sizes, attributes) in NTFS is duplicated and triplicated. Minor
error means that copies does not match original. E.g. "latime" means last access time. The native
chkdsk from Microsoft does not show these mismatches and fixes it silently (if /f is specified) —
see http://technet.microsoft.com/en-us/library/cc959914.aspx. Paragon chkntfs utility can also find
the following minor errors:

mdtime - modification time

chtime - last change time

asize - data allocated size

dsize - data size

attrib - attributes

To see more verbose output on minor errors, use -showminors command line option when running
chkntfs. For an example output, please see the log below:

# chkntfs --showminors /dev/sda2
WARNING! f parameter not specified.
Running chkntfs in read-only mode.
Checking Volume /dev/sda2...
Verifying 1680 records ...
$UpCase file is formatted for use in Windows NT/2K/XP Verifying 161

↪→folders ...
minor error " latime" in index 0x5 "." => "admin"
minor error " latime" in index 0xb "$Extend" => "$Reparse"
minor error " latime" in index 0x1f "public" => "EZ TALK.doc"
minor error " latime" in index 0x1f "public" => "Fedora-13-i686-LiveKDE"
minor error " latime" in index 0x1f "public" => "Fedora-13-x86_64-Live"
minor error " latime" in index 0x1f "public" => "FEDORA~1"
minor error " latime" in index 0x1f "public" => "FEDORA~2"
minor error " latime" in index 0x1f "public" => "FTP_login _information.

↪→doc"
minor error " latime" in index 0x1f "public" => "Reports"
minor error " latime" in index 0x1f "public" => "... 2 K.M..b."
minor error " latime" in index 0x1f "public" => "...~1"
minor error " mdtime chtime latime" in index 0x5bd
"_restore{FB5EFA8E-F7E1-4999-B498-21EEC0CF7124}" => "RP83"
minor error " latime" in index 0x676 "mungchacha_com .+LC Kung Fu Dunk"

↪→=> "DISC2.DAT.bc!"
minor error " latime" in index 0x676 "mungchacha_com .+LC Kung Fu Dunk"

↪→=> "DISC2D~1.BC!"
Verifying files security...

4.83 GB in 1492 files
464 KB in 163 directories
0 KB in bad blocks in 0 fragments

90424 KB in use by the system
65536 KB occupied by the log file
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4096 bytes in each allocation unit
182879943 total allocation units on volume
181590430 allocation units available on volume

The volume /dev/sda2 contains minor error(s).

10.2 Warnings on Windows7/Vista when NTFS HDD is reconnected from Linux

After NTFS volume previously operated by Paragon NTFS&HFS+ for Linux 9.6 driver is attached to
Windows Vista/Windows 7 machine, warnings are displayed on the screen. Why?

This is the case when volume was not unmounted correctly before it was detached from Linux system.

This section illustrates ‘dirty’ volumes handling as implemented in Windows 7. For more information
on dirty flag and its support in Paragon file system drivers products see Dirty flag issues subsection.

An USB HDD enclosure with 320 GB SATA HDD with one NTFS partition was detached from system
while file copy operation was in progress. After the enclosure was attached to Windows 7 PC again,
the following dialog was displayed:

After user clicks ‘Scan and fix (recommended)’, scan process begins:
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After checking is completed, the following summary window is displayed:

After user clicks ’Details’, the window is expanded and more detailed information is displayed to the
user:

In case there are no errors, the following information is displayed:
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10.3 Recently changed file has its modification time a few hours ahead of or behind
the current system time. Why?

This offset occurs due to the fact that NTFS stores file times as UTC time (in contrast to FAT that
stores local time) and the system might not have time zone setting that can be read by C library and
then used to convert file times reported by Kernel to local time.

Consequently, if a file is written to an NTFS volume on Windows with time zone set to, say, UTC+8,
and then the volume is connected to the Linux system, C library reports values provided by Kernel
‘as is’ without converting them to local time. However, if a file is modified on the Linux system, its
modification time is written to the file system as system’s current time and then it is reported correctly.
In the latter case, after the file modified on the Linux system is brought back to the Windows machine
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(with its local time zone set to UTC+8), the file’s modification time will be reported 8 hours ahead of
current time (assuming that current time is the same on the Linux system and Windows PC).

There is ’bias’ mount option (see Mount options subsection) that allows to work around the issue
on systems that do not have time zone setting readable by C standard library (first introduced in
version 8.1.023). However, we recommend that time zone setting that can be used by C standard
library to convert time values, is added to the Linux system.

10.4 Why does mount option A make driver ignore mount option B?

When you mount disk with several mount options driver may ignore some of them.

This issue can happen when mount command is used with several options coded like:

# mount -t ufsd -o option_A,option_B -o option_C device mount point

In this case driver may ignore options A and B when mounting disk with option C.

To prevent this possibility it is recommended to write your commands with several options like:

# mount -t ufsd -o option_A,option_B,option_C device mount point

10.5 Does the driver have an optimization for avoiding data fragmentation?

We use the driver for recording video data. This writes a huge amount of small data packs to the hard
drive. Can you tell me if the driver has an optimization for avoiding data fragmentation? Or will this
cause a strong fragmentation to the hard disk?

As of UFSD version 8.4, level of fragmentation mostly depends on number of files that are written to a
volume simultaneously. In case only one file is written with small chunks of data, no fragmentation will
occur beyond fragmentation caused by fragmentation of free space already existing on the volume.
In case several files are written simultaneously, fragmentation will occur if no counter measures are
taken.

One of possible countermeasures is to allocate large continuous chunks of disk space for files, by
using:

fallocate (fd, FALLOC_FL_KEEP_SIZE, ...)

This routine allocates disk space for file, but does not change file size. Before closing the file, one
could call ftruncate() to reclaim disk space that was allocated but was not written to, but that is up
to developer to decide whether it is needed to reclaim the unwritten space (maybe the allocated space
will be used in future write sessions, e.g. as in P2P network client software when downloading large
files during several sessions). This approach also reduces CPU load thus improving performance, as
there’s no need for FS driver to invoke disk space allocation routines each time small block should be
appended to a file.

UFSD version 8.5 has transparent feature called delayed allocation (available on 2.6.X Kernel
versions with writeback_inodes_sb_if_idle routine, see delalloc mount option) to prevent frag-
mentation even in case writes are performed in small chunks. For this feature to work, the system
must have enough memory for disk/file cache and write operations must be performed in buffered
mode.
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10.6 Why a lot of memory is used for volume mounting?

Let us describe what’s going on when UFSD driver mounts volumes.

First of all, the driver must read file system boot record, and after verifying it, it must also read some
metadata from the mounted volume, namely, parts of $Mft and the entire $Bitmap metafile. For
example, if the volume has $Bitmap of 74 MB, the driver has to read not less than 74MB to mount
it. When our driver reads data from disk, Kernel keeps the data cached in memory. The amount of
memory that Kernel allocates for I/O buffers is printed in line #3 of /proc/meminfo file (Buffers:
XXXX kB). It’s up to Kernel to decide how much memory to allocate for I/O buffers (this can be
tuned via Kernel metafiles – please see the link below for more information). The memory (allocated
for ‘Buffers’) is normally reclaimed by kernel when Kernel or an application needs to allocate some
memory for ‘private’ use.

The real-time report on memory allocated by our driver for operations on specific partition that is cur-
rently mounted, is available in line #2 of file /proc/fs/ufsd/<block_device_name>/volinfo.
Peak amount of memory allocated by UFSD driver when mounting NTFS volume is around 250 KB.
The amount then reduced to 40 KB after mount operation is completed.

10.7 Why the disk can’t be dismounted?

When you try to dismount the disk with the ’umount’ command the volume is reported ’busy’ and can’t
be unmounted. Why?

This issue can happen when there are working processes, that are still using the volume. There-
fore, there are several options to remove the conditions that prevent the storage medium from being
unmounted:

1. Check if it is possible to safely unmount the storage using the system’s web interface.

2. Check if support for external storage can be disabled from the system’s web interface. Disable the
services and retry unmounting the storage medium.

3. Check if the various file/media sharing services (like multimedia, SAMBA (SMB), AFP, etc) can be
disabled from the system’s web interface. Disable the services and retry unmounting the storage
medium.

Note: Windows system keeps SAMBA connection to the storage for several minutes. Disable the
connection and retry to unmount the storage medium. For example in Windows XP it can be done from
’Disconnect network drive’ menu (e.g. ’My computer’ -> ’Tools’ -> ’Disconnect
Network Drive’ menu).

If the volume couldn’t be unmount with these steps, use ’sync’ command to flush buffers to the
storage medium before detaching it manually from the device:

# sync

It is recommended also to add ’sync’ command before ’umount’ to the unmounting web-interface
script, as it helps to avoid file system corruption on the storage medium, if unmount script was unsuc-
cessful and the drive was detached manually.
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